研究業績
2025年
[153] 'Recognition of optical patterns directly iradiated to a three-dimensional silver sulfide physical reservoir', Y. Ohno, H. Tanaka and T. Hasegawa, Jpn. J. Appl. Phys., 64, 03SP15 (2025).
[152] 'In-sensor computing using a Cu-doped Ta2O5 reservoir for optical pattern classification', M. Hayakawa, H. Tanaka and T. Hasegawa, Jpn. J. Appl. Phys., 64, 03SP21 (2025).
[151] 'Physical reservoir oepration utilizing polarization change in a liquid crystal film', A. Mizuno, S. Nagano, H. Tanaka and T. Hasegawa, Jpn. J. Appl. Phys., 64, 03SP23 (2025).
[150] ’Multimodal object recognition and real-time anomaly detection by physical reservoir computing using an Ag2S reservoir’, K. Yoshimura H. Tanaka and T. Hasegawa, Jpn. J. Appl. Phys., 64, 03SP05 (2025).
2024年
[149] 'Three-dimensional physical reservoir made of Ag2S particles', Y. Ohno and T. Hasegawa, Nonlinear Theory and its Applications, IEICE, 15 (4), 861-870 (2024).
[148] 'Development of a physical reservoir that operates by the diffusion of Cu cations', M. Hayakawa and T. Hasegawa, Jpn. J. App. Phys., 63 (4), 04SP29 (2024).
[147] 'Classification of direct optical signal inputs by Ag2S island network reservoir', R. Matsuo and T. Hasegawa, Jpn. J. Appl. Phys., 63 (3), 03SP61 (2024).
[146] 'Influence of unique behaviors in an atomic switch operation on hardware-based deep learning', K. Tomatsuri and T. Hasegawa, Jpn.J.Appl.Phys., 63 (3), 03SP56 (2024).
[145] 'Simulation of a physical reservoir made of a Ag2S islands network', Y. Murase and T. Hasegawa, Jpn. J. App. Phys., 63 (3), 03SP53 (2024).
[144] 'Research on tactile sensation by physical reservoir computing with a robot arm and a Ag2S reservoir', K. Yoshimura and T. Hasegawa, Jpn. J. App. Phys., 63 (3), 03SP17 (2024).
[143] 'Implementation of rock-paper-scissors judgment systems with a Ag2S reservoir', A. Mizuno, Y. Ohno, M. Hayakawa, K. Yoshimura, and T. Hasegawa, Jpn. J. J. App. Phys., 63 (2), 02SP60 (2024).
2023年
[142]‘Ag2S island network reservoir that works with direct optical signal inputs’, Y. Shimizu, K. Minegishi, H. Tanaka and T. Hasegawa, Jpn. J. Appl. Phys., 62, SG1001 (2023).
[141] ‘Performance improvement of a Ag-ion controlled molecular-gap atomic switch by reducing a switching area for applying to a deep learning system’, N. Tanimoto and T. Hasegawa, Jpn. J. Appl. Phys., 62, SG1017 (2023).
[140] ‘Frequency dependent operations of a Ag2S island network reservoir’, K. Minegishi, Y. Shimizu and T. Hasegawa, Jpn. J. Appl. Phys., 62, SG1032 (2023).
[139] ‘Yield improvement in fabrication of a molecular-gap atomic switch by eliminating potential leakage paths’, H. Ishijima and T. Hasegawa, Jpn. J. Appl. Phys., 62, SG1005 (2023).
2022年
[138] ‘Rainer Waser – A Pioneer of Fundamentals of Resistive Switching Memories’, I. Valov, T. Hasegawa and D. Strukov, Adv. Electronic Mater. 8, 2200765 (2022).
[137] ‘Quantum conductance in memristive devices: fundamentals, developments, and applications’, G. Milano, M. Aono, L. Boarino, U. Celano, T. Hasegawa, M. Kozick, S. Majumdar, M. Menghini, E. Miranda, C. Ricciardi, S. Tappertzhofen, K. Terabe and I. Valov, Adv. Mater., 34, 2201248 (2022).
[136] ‘In-materio reservoir working at low frequencies in a Ag2S-island network’, M. Nakajima, K. Minegishi, Y. Shimizu, Y. Usami, H. Tanaka and T. Hasegawa, Nanoscale, 14, 7634-7640 (2022).
[135] ‘Behavioral model of molecular gap-type atomic switches and its SPICE integration’, H. Kubota, T. Hasegawa, M. Akai-Kasaya and T. Asai, Circuits and Systems, 13, 1-12 (2022).
[134] ‘Noise sensitivity of physical reservoir computing in a ring array of atomic switches’, H. Kubota, T. Hasegawa, M. Akai-Kasaya and T. Asai, Nonlinear Theory and Its Applications, IEICE, 13, 3730378 (2022).
[133] ‘Resistive switching memristor: On the direct observation of physical
nature of parameter variability’, Z. Wang, W. Xiao, H. Yang, S. Zhang,
Y. Zhang, K. Sun, T. Wang, Y. Fu, Q. Wang, J. Zhang, T. Hasegawa, and D.
He, ACS Appl. Mater. Interfaces, 14, 1557-1567 (2022).
2021年
[132] ‘Reservoir computing on atomic switch arrays with high precision and excellent memory characteristics’, H. Kubota, T. Hasegaea, M. Akai-Kasaya and T. Asai, J. Signal Processing, 25, 123-126 (2021).
[131] ‘In-situ reproducible sharp tips for atomic force microscopy’, J. Onoda, T. Hasegawa and Y. Sugimoto, Phys. Rev. Appl., 15, 034079 (2021).
[130] ‘Measurement of changes in resistance of a Ag2+S nano-island on removal of dopant -Ag atoms’, N. Mishima, T. Tsuruoka and T. Hasegawa, Jpn. J. Appl. Phys., 60(SE), SE1001 (2021).
[129] ‘Changes in the temperature dependence of Ag/Ta2O5/Pt gapless-type atomic switches caused by desorption/adsorption of water molecules from/into Ta2O5 matrix’, M. Mikami, N. Tanahashi, T. Tsuruoka and T. Hasegawa, Jpn. J. Appl. Phys., 60(SC), SCCF05 (2021).
[128] ‘Study on a conductive channel of a Pt/NiO/Pt ReRAM by bias application with/without a magnetic field’, Y. Koga and T. Hasegawa, Jpn. J. Appl. Phys., 60(SC), SCCF03 (2021).
2020年
[126] ‘Development of a metal oxide-based molecular-gap atomic switch for unconventional computing’, M. Araki and T. Hasegawa, Jpn. J. Appl. Phys., 59(4), 040605 (2020).
[125] ‘Formation and dissolution of conductive channels in an Ag2S-islands network’, K. Ojima, T. Hasegawa, Y. Naitoh, H. Shima and H. Akinaga, Jpn. J. Appl. Phys., 59(SN), SN1011 (2020).
[124] ‘Reliable oepration of a molecular-gap atomic switch in a vacuum achieved by covering with an ionic liquid’, C. Arima, Y. Naitoh, H. Shima, H. Akinaga and T. Hasegawa, Jpn. J. Appl. Phys., 59(SI), SIIF04 (2020).
[123] ‘SiO2/Ta2O5 heterojunction ECM memristors: Physical nature of their low voltage operation with high stability and uniformity’, X. Guo, Q. Wang, X. Lv, H. Yang, K. Sun, D. Yang, H. Zhang, T. Hasegawa and D. He, Nanoscale, 12(7), 4320-4327 (2020).
[122] ‘Stable analog resistance change of a molecula-gap atomic switch
over a wide range’, A. Kassai and T. Hasegawa, Jpn. J. Appl. phys., 59,
SIIF01 (2020).
2019年
[121] ‘A nano-mechanical device using a Ag2S-C60 system’, Y. Ishikawa, T. Hasegawa and C. Joachim, Jpn. J. Appl. Phys., 58(SD), SDDF02 (2019).
[120] ‘Electrochamical metallization ReRAMs(ECM)-Experiments and modeling: General discussion’, Ambrosi, E., Bartlett, P., Berg, A. I., Brivio, S., Burr, G., Deswal, S., Deuermeier, J., Haga, M. A., Kiazadeh, A., Kissling, G., Kozicki, M., Foroutan-Nejad, C., Gale, E., Gonzalez-Velo, Y., Goossens, A., Goux, L., Hasegawa, T., Hilgenkamp, H., Huang, R., Ibrahim, S. 2019 1 1, : : Faraday Discussions. 213, p. 115-120 6 p
[119] ‘Resistivity control by the electrochemical removal of dopant atoms from a nanodot’, W. Hiraya, N. Mishima, T. Shima, S. Tai, T. Tsuruoka, I. Valov and T. Hasegawa, Faraday Discussions, 213, 29-40 (2019)
[118] ‘Time-dependent operations in molecular gap atomic switches’, A.
Suzuki, T. Tsuruoka and T. Hasegawa, Physica Status Solidi (B), 256(8),
1900068 (2019)
2018年
[117] ‘Development of a molecular gap-type atomic switch and its stochastic operation’, C. Arima, A. Suzuki, A. Kassai, T. Tsuruoka and T. Hasegawa, J. Appl. Phys., 124(15), 152114 (2018).
[116] ‘Nanoarchirectonics for controlling the number of dopant atoms in solid electrolyte nanodots’, A. Nayak, S. Unayama, S. Tai, T. Tsuruoka, R. Waser, M. Aono, I. Valov and T. Hasegawa, Adv. Mater., 30(6), 1703261 (2018).
[115] ‘Oxygen vacancy drift controlled three-terminal ReRAM with a reduction in operating gate bias and gate leakage current’, Q. Wang, Y. Itoh, T. Tsuruoka, M. Aono, D. He and T. Hasegawa, Solid State Ionics, 328, 30-34 (2018)2017年
[113] ‘Operating mechanism and resistive switching characteristics of two- and three-terminal atomic switches using a thin metal oxide layer’, T. Tsuruoka, T. Hasegawa, K. Terabe and M. Aono, J. Electroceramics, 39, 143-156 (2017). DOI: 10.1007/s10832-016-0063-9
[112] ‘P-type polymer-based Ag2S atomic switch for “tug of war” operation’, C. Lutz, T. Hasegawa, T. Tsuchiya, C. Adelsberger, R. Hayakawa and T. Chikyow, Jpn. J. Appl.Phys., 56(6), 06GF03 (2017).
2016年
[111] “Decision maker based on atomic switches”, S. Kim, T. Tsuruoka, T.
Hasegawa, M. Aono, K. Terabe and M. Aono, AIMS Materials Science, 3(1),
245-259 (2016).
[110] ‘Ag2S atomic switch-based ‘tug of war’ for decision making’, C. Lutz,
T. Hasegawa and T. Chikyow, Nanoscale, 8 (29) (2016) 14031-14036.
[109] ‘Composition of thin Ta2O5 films deposited by different methods and
the effect of humidity on their resistive switching behavior’, C. Mannequin,
T. Tsuruoka, T. Hasegawa and M. Aono, Jpn. J. Appl. Phys., 55 (6) (2016)
06GG08.
[108] ‘Humidity effects on the redox reactions and ionic transport in a
Cu/Ta2O5/Pt atomic switch structure’, T. Tsuruoka, I. Valov, C. Mannequin,
T. Hasegawa, R. Waser and M. Aono, Jpn. J. Appl. Phys., 55 (6) (2016) 06GJ09.
[107] ‘Identification and roles of nonstoichimetric oxygen in amorphous Ta2O5 thin films deposited by electron beam and sputtering processes’, C. Mannequin, T. Tsuruoka, T. Hasegawa and M. Aono, Appl. Surf. Sci., 385 (2016) 426-435.
2015年
[105] ‘Fabrication and characterization of suspended narrow silicon nanowire
channels for low-power nano-electro-mechanical (MEM) switch applicaitons’,
L. Boodhoo, L. Crudgington, H. M. Chong, Y. Tsuchiya, Z. Moktadir, T. Hasegawa,
H. Mizuta, Microelectronic Engineering, 145 (2015) 66-70.
[104] ‘Observation of a Ag protrusion on a Ag2S island using a scanning
tunneling microscope’, T. Ohno and T. Hasegawa, Results in Physics, 5 (2015)
182-183.
[103] ‘Ultra-low voltage and ultra-low power consumption nonvolatile operation
of three-terminal atomic switch’, Q. Wang, Y. Itoh, T. Tsuruoka, M. Aono
and T. Hasegawa, Advanced Materials, 27 (39) (2015) 6029-6033. (Oct. 1,
2015) on-line published 2015.8.28, DOI: 10.1002/adma.201502678
[102] ‘Redox reactions at Cu, Ag/Ta2O5 interfaces and the effects of Ta2O5
film density on the forming process in atomic switch structures', T. Tsuruoka,
I. Valov, S. Tappertzhofen, J. van de Hurk, T. Hasegawa, R. Waser, and
M. Aono, Advanced Functional Materials, 25 (40) (2015) 6374-6381. DOI:10.1002/adfm.201500853.
[101] ‘Effects of temperature and ambient pressure on the resistive switching
behavior of a polymer-based atomic switch’, S. R. Mohapatra, T. Tsuruoka,
Karthik Krishnan, T. Hasegawa, and M. Aono, Journal of Materials Chemistry
C, 3(22) (2015) 5715-5720. (Jun. 1 (2015)). DOI: 10.1039/c5tc00842e
[100] ‘Position detection and observation of a conducting filament hidden under a top electrode in a Ta2O5-based atomic switch', A. Nayak, Q. Wang, Y. Itoh, T. Tsuruoka, T. Hasegawa, L. Boodhoo, H. Mizuta, and M. Aono - Nanotechnology 26, 145702 (2015).
2014年
[98] ‘Influence of Atmosphere on Photo-Assisted Atomic Switch Operations’, T. Hino, T. Hasegawa, H. Tanaka, T. Tsuruoka, T. Ogawa and M. Aono, Key Eng. Mater., 596, 116-120 (2014).
[97] ‘Two types of on-state observed in the operation of a redox-based
three-terminal device’,Q. Wang, Y. Itoh, T. Tsuruoka, T. Hasegawa, S. Watanabe,
S. Yamaguchi, T. Hiramoto and M. Aono, Key Eng. Mater., 596, 111-115 (2014).
2013年
[96] ‘Synaptic plasticity and memory functions achieved in WO3-x-based nanoionics device by using principle of atomic switch operation’, R. Yang, K. Terabe, Y. Yao, T. Tsuruoka, T. Hasegawa, J. Gimzewski, and M. Aono, Nanotechnol., 24(38), 384003-1-9 (2013).
[95] ‘Volatile and nonvolatile selective switching of a photo-assisted initialized atomic switch’,T. Hino, T. Hasegawa, H. Tanaka, T. Tsuruoka, K. Terabe, T Ogawa, and M Aono,Nanotecnol., 24(38), 384006-1-7 (2013).
[94] ‘Generic Relevance of Counter Charges for Cation-Based Nanoscale Resistive Switching Memories’, S. Tappertzhofen, I. Valov, T. Tsuruoka, T. Hasegawa, R. Waser, and M. Aono, ACS Nano, 7(7), 6396-6402 (2013).
.[93] ‘Nonvolatile three-terminal operation based on oxygen vacancy drift in a Pt/Ta2O5-x/Pt, Pt structure’, Q. Wang, Y. Itoh, T. Hasegawa, T. Tsuruoka, S. Yamaguchi, S. Watanabe, T. Hiramoto, and M. Aono, Appl. Phys. lett., 102(23), 233508-1-5 (2013).
[92] ‘Rate-limiting processes in the fast SET operation of a gapless-type
Cu-Ta2O5 atomic switch’,T. Tsuruoka, T. Hasegawa, I. Valov, R. Waser, and
M. Aono, AIP Advances, 3(3), 032114-1-7 (2013)
2012年
[91] ‘On-Demand Nanodevice with Electrical and Neuromorphic Multifunction Realized by Local Ion Migration’, R. Yang , K. Terabe , G. Liu , T. Tsuruoka , T. Hasegawa, J. K. Gimzewski , and M. Aono,ACS Nano, 6(11), 9515-9521 (2012).
[90] ‘Conductance quantization and synaptic behavior in a Ta2O5-based atomic switch’, T. Tsuruoka, T. Hasegawa, K. Terabe and M. Aono, Nanotecnol., 23(43), 435705 (2012).
[89] ‘Controlling the synaptic plasticity of a Cu2S gap-type atomic switch’, A. Nayak, T. Ohno, T. Tsuruoka, K. Terabe, T. Hasegawa, J. K. Gimzewski, and M. Aono, Adv. Func. Mater., 22(17), 3606-3613 (2012).
[88] ‘Oxygen migration process in the interfaces during bipolar resistance switching behavior of WO3-x-based nanoionics devices’, R. Yang, K. Terabe, T. Tsuruoka, T. Hasegawa and M. Aono, Appl. Phys. Lett., 100(23), 231603-1-4 (2012).
[87] ‘Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces’,I. Valov, I. Sapezanskaia, A. Nayak, T. Tsuruoka, T. Bredow, T. Hasegawa, G. Staikov, M. Aono and R. Waser, Nat. Mater., 11, 530-536 (2012).
[86] ‘Electronic state formation by surface atom removal on a MoS2 surface’, N. Kodama, T. Hasegawa, T. Tsuruoka, C. Joachim and M. Aono, Jpn. J. Appl. Phys., 51(6), 06FF07-1-4 (2012).
[85] ‘Flexible resistive switching memory using inkjet printing of a solid polymer’, S. R. Mohapatra, T. Tsuruoka, T. Hasegawa, K. Terabe and M. Aono,AIP Advances, 2(2), 22144 (2012).
[84] ‘Development and Application of Multiple-probe Scanning Probe Microscopes’,T. Nakayama, O. Kubo, Y. Shingaya, S. Higuchi, T. Hasegawa, C-S Jiang, T. Okuda, Y. Kuwahara, K. Takami and M. Aono, Adv. Mater., 24(13), 1675-1692 (2012).
[83] ‘Atomic Switch: Atom/Ion Movement Controlled Devices for Beyond Von-Neumann Computers’, T. Hasegawa, K. Terabe, T. Tsuruoka and M. Aono, Adv. Mater. 24(2), 252-267 (2012).
[82] ‘Effects of moisture on the switching characteristics of oxide-based,
gapless-type atomic switches’,T. Tsuruoka, K. Terabe, T. Hasegawa, I. Valov,
R. Waser and M. Aono,Adv. Funct. Mater. 22(1), 70-77 (2012).
2011年
[81] ‘Sensory and short-term memory formations observed in a Ag2S gaptype atomic switch’, T. Ohno, T. Hasegawa, A. Nayak, T. Tsuruoka, J. K. Gimzewski and M. Aono, Appl. Phys. Lett. 99(20), 203108 (3pp) (2011).
[80] ‘Bulk and Surface Nucleation Processes in Ag2S Conductance Switches’,M. Morales-Masis, S.J. van der Molen, T. Hasegawa, J.M. van Ruitenbeek, Phys. Rev. B: Condens. Matter 84(11), 115310-1~115310-7 (2011).
[79] ‘Rate Determining Factors in the Chain Polymerization of Molecules Initiated by Local Single-Molecule Excitation’, M. Swapan, Y. Okawa, T. Hasegawa and M. Aono,ACS Nano 5(4), 2779-2786 (2011).
[78] ‘Short-term plasticity and long-term potentiation mimicked in single inorganic synapses’,T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski and M. Aono, Nat. Mater. 10(8), 591-595 (2011).
[77] ‘Theoretical investigation of kinetics of a Cu2S-based gap-type atomic switch’, A. Nayak, T. Tsuruoka, . K. Terabe, T. Hasegawa and M. Aono, Appl. Phys. Lett. 98(23), 233501-1-3 (2011).
[76] ‘Switching kinetics of a Cu2S-based gap-type atomic switch’, A. Nayak, T. Tsuruoka, K. Terabe, T. Hasegawa and M. Aono, Nanotechnology 22(23), 235201 (7pp) (2011).
[75] ‘Chemical Wiring and Soldering toward All-Molecule Electronic Circuitry’, Y. Okawa, S. Mandal, C. Hu, Y. Tateyama, S. Goedecker, S. Tsukamoto, T. Hasegawa, J. K. Gimzewski, and M. Aono, J. Am. Chem Soc 133(21), 8277-8233 (2011).
[74] ‘Atomic switches: atomic-movement-controlled nanodevices for new types of computing’,T. Hino, T. Hasegawa, K. Terabe, T. Tsuruoka, A. Nayak, T. Ohno and M. Aono,Sci. Technol. Adv. Mater. 12(1), 013003-1-12 (2011).
[73] ‘Temperature effects on the switching kinetics of a Cu-Ta2O5-based atomic switch’, T. Tsuruoka, K. Terabe, T. Hasegawa and M. Aono, Nanotechnology 22(25), 254013 (2011).
[72] ‘Three-terminal nanometer metal switches utilizing solid electrolytes’, H. Kawaura, T. Sakamoto, N. Bannno, S. Kaeriyama, M. Mizuno, K. Terabe, T. Hasegawa and M. Aono, Electronics and Communications in Japan, 94(4), 55-61 (2011).
[71] ‘Memristive operations demonstrated by gap-type atomic switches’, T. Hasegawa, N. Alpana, T. Ohno, K. Terabe, T. Tsuruoka, J.K. Gimzewski and M. Aono, Appl. Phys. A 102(4), 811-815 (2011).
[70] ‘Volatile/Nonvolatile Dual-Functional Atom Transistor’, T. Hasegawa, Y. Itoh, H. Tanaka, T. Hino, T. Tsuruoka, K. Terabe, H. Miyazaki, K. Tsukagoshi, T. Ogawa, S. Yamaguchi and M. Aono, Appl. Phys. Express 4(1), 15204 (2011).
[69] ‘A polymer-electrolyte-based atomic switch’, S. Wu, T. Tsuruoka, K.
Terabe, T. Hasegawa, J. P. Hill, K. Ariga and M. Aono, Adv. Funct. Mater.
21(1), 93-99 (2011).
2010年
[68] ‘The Atomic Switch’, M. Aono, and T. Hasegawa, Proceedings of the IEEE 98(12), 2228-2236 (2010).
[67] ‘Toward sub-20 nm hybrid nanofabrication by combining the molecular method and electron beam lithography’, C. B. Li, T. Hasegawa, H. Tanaka, H. Miyazaki, S. Odaka, K. Tsukagoshi and M. Aono,Nanotechnology 21(49), 495304 (4pp), (2010).
[66] ‘Forming and switching mechanisms of a cation-migration-based oxide resistive memory’,T. Tsuruoka, K. Terabe, T. Hasegawa and M. Aono, Nanotechnology 21(42), 42505 (8pp), (2010).
[65] ‘Photo-assisted formation of atomic switch’,T. Hino, H. Tanaka, T. Hasegawa, M. Aono and T. Ogawa,Small, 6(16), 1745-1748 (2010).
[64] ‘Electronic states of sulfur vacancies formed on a MoS2 surface’, N. Kodama, T. Hasegawa, Y. Okawa, T. Tsuruoka, C. Joachim and M. Aono, Jpn. J. Appl. Phys., 49(8), 08LB01-1-08LB01-4 (2010).
[63] ‘Structural characterization of amorphous Ta2O5 and SiO2-Ta2O5 used as solid electrolyte for nonvolatile switches’, N. Banno, T. Sakamoto, N. Iguchi, M. Matsumoto, H. Imai, T. Ichinari, S. Fujieda, S. Watanabe, S. Yamaguchi, T. Hasegawa and M. Aono, Appl. Phys. Lett. 97(11), 113507 - 113507-3 (2010).
[62] ‘Size tunable UV luminescent silicon nanocrystals’, N. Shirahata, T. Tsuruoka, T. Hasegawa and Y. Sakka,Small, 6(8), 915-921 (2010).
[61] ‘Learning abilities achieved by a single solid-state atomic switch’, T. Hasegawa, T. Ohno, K. Terabe, T. Tsuruoka, T. Nakayama, J. K. Gimzewski and M. Aono,Adv. Mater. 22(16), 1831-1834 (2010).
[60] ‘Rate-limiting processes determining the switching time in a Ag2S
atomic switch’, A. Nayak, T. Tamura, T. Tsuruoka, K. Terabe, S. Hosaka,
T. Hasegawa and M. Aono, J. Phys. Chem.. Lett. 1(3), 604-608 (2010).
2009年
[59] ‘Nanoionics switching device: “Atomic Switches”, T. Hasegawa, K. Terabe,
T. Sakamoto and M. Aono, MRS Bulletin, 34(12), 929-934 (2009).
2008年
[58] ‘A solid electrolyte nanometer switch’, T. Sakamoto, S. Kaeriyama, M. Mizuno, H. Kawaura, T. Hasegawa, K. Terabe and M. Aono, Electrical Engineering in Japan, 165(1), 68-73 (2008).
[57] ‘Diffusivity of Cu ions in solid electrolyte and its effect on the performance of nanometer-scale switch’, N. Banno, T. Sakamoto, N. Iguchi, H. Sunamura, K. Terabe, T. Hasegawa and M. Aono, IEEE Transaction on Electron Devices, 55(11), 3283-3287 (2008).
[56] ‘Structural studies of copper sulfide films: Influence of ambient atmosphere’, M. Kundu, T. Hasegawa, K. Terabe, K. Yamamoto, and M. Aono, Sci. Technol. Adv. Mat., 9(3), 035011(6pp) (2008).
[55] ‘Resistance Switching in Anodic Oxidized Amorphous TiO2 Films’, Ch. Liang, K. Terabe, T. Hasegawa, and M. Aono, Appl. Phys. Express 1(6), 064002-1-3 (2008).
[54] ‘Atomic force microscopy and theoretical investigation of the lifted-up conformation of polydiacetylene on a graphite substrate’, Y. Okawa, D. Takajo, S. Tsukamoto, T. Hasegawa, and M. Aono, Soft Matter, 4(5), 1041-1047 (2008).
[53] ‘Effect of sulfurization condition on structural and electrical properties of copper sulfide films’,M. Kundu, T. Hasegawa, K. Terabe, and M. Aono, J. Appl. Phys., 103(7), 073523-1-7 (2008).
[52] ‘Optical waveguide properties of single indium oxide nanofibers’,
T. Tsuruoka, Ch. Liang, K. Terabe, and T. Hasegawa, J. Optics A (Pure and
Applied Optics), 10(5), 055201-1-5 (2008).
2007年
[51] ‘Material dependence of switching speed of atomic switches made from silver sulfide and from copper sulfide’, T. Tamura, T. Hasegawa, K. Terabe, T. Nakayama, T. Sakamoto, H. Sunamura, H. Kawaura, S. Hosaka and M. Aono, J. Phys.: Conf. Series, 61(1), 1157-1161 (2007).
[50] ‘Origin of green emission from ZnS nanobelts as revealed by scanning near-field optical microscopy’, T. Tsuruoka, Ch. Liang, K. Terabe, and T. Hasegawa, Appl. Phys. Lett., 92(9), 091908-1-3 (2007).
[49] ‘Anomalous phase transition and ionic conductivity of AgI nanowire grown using porous alumina template’, Ch. Liang, K. Terabe, N. Iyi, T. Hasegawa, and M. Aono, J. Appl. Phys., 102(12), 124308-1-5 (2007).
[48] ‘Control of local ion transport to create unique functional nanodevices based on ionic conductors’, K. Terabe, T. Hasegawa, Ch. Liang, and M. Aono, Sci. Technol. Adv. Mater. 8(6), 536-542 (2007).
[47] ‘Resistance switching of an individual Ag2S/Ag nanowire heterostructure’, Ch. Liang, K. Terabe, T. Hasegawa, and M. Aono, Nanotechnology 18(48), 485202-1-5 (2007).
[46] 'Electronic transport in Ta2O5 resistive switch', T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe and M. Aono, Appl. Phys. Lett., 91, 092110-1-3 (2007).
[45] ‘I-V characteristics of single electron tunneling from symmetric and asymmetric double-barrier tunneling junctions’, R. Negishi, T. Hasegawa, K. Terabe, M. Aono, H. Tanaka, T. Ogawa, and H. Ozawa, Appl. Phys. Lett., 90(22), 223112-1-3 (2007).
[44] ‘Agl/Ag Heterojunction Nanowire: Facile Electrochemical Synthesis, Photoluminescence, and Enhanced Ionic Conductivity’, Ch. Liang, K. Terabe, T. Tsuruoka, M. Osada, T. Hasegawa, and M. Aono, Adv. Funct. Mater. 17, 1466-1472 (2007).
[43] ‘Size-dependent single electron tunneling effect in Au nanoparticles’, R. Negishi, T. Hasegawa, H. Tanaka, K.Terabe, H. Ozawa, T. Ogawa, and M.Aono, Surf. Sci., 601, 3907-3911 (2007).
[42] ‘Chain Polymerization of Diacetylene Compound Multilayer Films on
the Topmost Surface Initiated by Scanning Tunneling Microscope Tip’, D.
Takajo, Y. Okawa, T. Hasegawa, and M. Aono, Langmuir, 23, 5247-5250 (2007).
2006年
[41] ‘Solid-Electrolyte Nanometer Switch’, N. Banno, T. Sakamoto, N. Iguchi, H. Kawaura, S. Kaeriyama, M. Mizuno, K. Terabe, T. Hasegawa, and M. Aono, IEICE Transactions on Electronics, E89-C, 11, 1492-1498 (2006).
[40] ‘Template synthesis of M/M2S (M = Ag, Cu) hetero-nanowires by electrochemical technique’,C.H. Liang, K. Terabe, T. Hasegawa, and M. Aono, Solid State Ionics, 177, 2527-2531 (2006).
[39] ‘Formation of metastable silver nanowire of hexagonal structure and their structure transformation under electron beam irradiation’, Ch. Liang, K. Terabe, T. Hasegawa, and M. Aono, Jpn. J. Appl. Phys., 45(7), 6046-6048 (2006).
[38] ‘Fabrication of nanoscale gaps using a combination of self-assemble molecular and electron beam lithographic techniques’, R. Negishi, T. Hasegawa, K. Terabe, M. Aono, T. Ebihara, H. Tanaka, T. Ogawa, Appl. Phys. Lett., 88, 223112-1~223112-3 (2006).
[37] 'Effect of sulfurization conditions and post deposition annealing treatment on the structural and electrical properties of silver sulfide films', M. Kundu, K. Terabe, T. Hasegawa, and M. Aono, J. Appl. Phys., 99, 103501-1~103501-9 (2006).
[36] 'Effect of ion diffusion on switching voltage of solid-electrolyte nanometer switch', N. Banno, T. Sakamoto, T. Hasegawa, K. Terabe, and M. Aono, Jpn. J. Appl. Phys., 45(4B), 3666-3668 (2006)
[35] 'Switching Property of Atomic Switch Controlled by Solid Electrochemical
Reaction', T. Tamura, T. Hasegawa, K. Terabe, T. Nakayama, T. Sakamoto,
H. Sunamura, H. Kawaura, S. Hosaka, and M. Aono, Jpn. J. Appl. Phys., 45(12),
L364-L366 (2006).
2005年
[34] 'Ionic-Electronic Conductor Nanostructures: Template-Confined Growth and Nonlinear Electrical Transport', Ch. Liang, K. Terabe, T. Hasegawa, R. Negishi, T. Tamura, and M. Aono, Small, 10, 971 –975 (2005).
[33] ‘A nonvolatile programmable solid-electrolyte nanometer switch’, S. Kaeriyama, T. Sakamoto, H. Sunamura, M. Mizuno, H. Kawaura, T. Hasegawa, K. Terabe, T. Nakayama and M. Aono, IEEE J. Solid-State Circuits, 40(1), 168-176 (2005).
[32] ‘Quantized conductance atomic switch’, K. Terabe, T. Hasegawa, T.
Nakayama and M. Aono, Nature, 433, 47-50 (2005).
2003年
[31] ‘Nanometer-scale switches using copper sulfide’, T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama and M. Aono, Appl. Phys. Lett., 82, 3032-3034 (2003).
2002年
[30] ‘Far-Field and Near-Field Optical Readings of under-50 nm-Sized pits’, S. Hosaka, T. Shintani, H. Koyanagi, K. Katoh, T. Nishida, T. Saiki and T. Hasegawa, Jpn. J. Appl. Phys., 41, L884-L886 (2002).
[29] ‘Ionic/Electronic Mixed Conductor Tip of a Scanning Tunneling Microscope as a Metal Atom Source for Nanostructuring’, K. Terabe, T. Nakayama, T. Hasegawa and M. Aono, Appl. Phys. Lett., 80, 4009-4011 (2002).
[28] ‘Formation and Disappearance of a Nanoscale Silver Cluster Realized
by Solid Electrochemical Reaction’, K. Terabe, T. Nakayama, T. Hasegawa
and M. Aono, J. Appl. Phys., 91, 10110-10114 (2002).
2001年
[27] ‘Quantum point contact switch realized by solid electrochemical reaction’,
K. Terabe, T. Hasegawa, T. Nakayama and M. Aono,
Riken Review 37, 7-8 (2001).
1996年
[26] ‘STM modification of MoS2 in the nanometer-scale using a gas-solid reaction’, M. Kohno, T. Doi, T. Hasegawa, S. Tomimatsu and S. Hosoki, Thin Solid Film, 281-282, 588-590 (1996).
[25] ‘Cu film growth on a Si(111) surface studied by scanning tunneling microscopy’, S. Tomimatsu, M. Kohno, T. Hasegawa and S. Hosoki, Jpn. J. Appl. Phys. 35, 3730-3733 (1996).
[24] ‘Dynamic observation of Si-island growth on a Si(111)-7x7 surface by high-temperature scanning tunneling microscopy’, T. Hasegawa, W. Shimada, H. Tochihara and S. Hosoki, J. Cryst. Growth, 166, 314-318 (1996).
[23] ‘Intrarow diffusion of Au atoms in the Si(111)-(5x2)Au structure’, T. Hasegawa and S. Hosoki, Phys. Rev. B 54, 10300-10303 (1996).
[22] ‘Stable phase boundaries between the 7x7 and the 5x2Au structures on a Si(111) surface studied by high-temperature STM’, T. Hasegawa, S. Hosoki and K. Yagi, Surf. Sci. 355, L295-L299 (1996).
[21] ‘Domain growth of Si(111)-5x2Au by high-temperature STM’, T. Hasegawa, S. Hosaka and S. Hosoki, Surf. Sci. 357-358, 858-862 (1996).
1995年
[20] ‘Fabrication of nanostructures using scanning probe microscopes’,
S. Hosaka, S. Hosoki, T. Hasegawa, H. Koyanagi, T. Shintani and M. Miyamoto,
J. Vac. Sci. Technol. B13, 2813-2818 (1995).
1994年
[19] ‘Just-on-surface magnetic force microscopy’, S. Hosaka, A. Kikukawa, Y. Honda and T. Hasegawa, Appl. Phys. Lett. 65, 3407-3409 (1994).
[18] ‘Initial stage of oxygen adsorption onto a Si(111)-7x7 surface studied by scanning tunneling microscopy’, T. Hasegawa, M. Kohno and S. Hosoki, Jpn. J. Appl. Phys. 33, 3702-3705 (1994).
[17] ‘Initial stages of oxygen adsorption onto a Si(111)-7x7 surface studied by STM’, T. Hasegawa, M. Kohno, S. Hosaka and S. Hosoki, Surf. Sci. Lett. 312, L753-L756 (1994).
[16] ‘Dynamic observation of silicon homoepitaxial growth by high-temperature
scanning tunneling microscopy’, T. Hasegawa, M. Kohno, S. Hosaka and S.
Hosoki, J. Vac. Sci. Technol. B12, 2078-2081 (1994).
1993年
[15] ‘Ultrahigh vacuum atomic force microscope using a pantograph inchworm mechanism’, S. Hosaka, Y. Honda, T. Hasegawa, T. Yamamoto and M. Kondo, Rev. Sci. Instrum. 64, 3524-3529 (1993).
[14] ‘Dynamic observation of Si crystal growth on a Si(111) 7x7 surface
by high-temperature scanning tunneling microscopy’,T. Hasegawa, M. Kohno,
S. Hosaka and S. Hosoki,Phys. Rev. B 48, 1943-1946 (1993).
1992年
[13] ‘Observation of natural oxide growth on silicon facets using an atomic force microscope with current measurement’, S. Hosaka, H. Koyanagi, T. Hasegawa, S. Hosoki and A. Hiraiwa, J. Appl. Phys. 72, 688-691 (1992).
[12] ‘Surface modification of MoS2 using STM’, S. Hosoki, S. Hosaka and T. Hasegawa, Appl. Surf. Sci. 60/61, 643-647 (1992).
[11] ‘In Situ Observation of Gold Adsorption onto Si(111)7x7 Surface by
Scanning Tunneling Microscopy’, T. Hasegawa, S. Hosaka and S. Hosoki, Jpn.
J. Appl. Phys. 31, L1492-L1494 (1992).
1991年
[10]‘Initial stage of Au adsorption onto a Si(111) surface studied by scanning
tunneling microscopy’, T. Hasegawa, K. Takata, S. Hosaka and S. Hosoki,
J. Vac. Sci. Technol. B9, 758-760 (1991).
1990年
[9] ‘Tunneling barrier height imaging and polycrystalline Si surface observations’, S. Hosaka, K. Sagara, T. Hasegawa, K. Takata and S. Hosoki, J. Vac. Sci. Technol. A8, 270-274 (1990).
[8] ‘Dynamic observation of Si(111) surface using a fast scanning tunneling microscope’, S. Hosaka, T. Hasegawa, S. Hosoki and K. Takata, Appl. Phys. Lett. 57, 138-140 (1990).
[7] ‘Fast scanning tunneling microscope for dynamic observation’, S. Hosaka, T. Hasegawa, S. Hosoki and K. Takata, Rev. Sci. Instrum. 61, 1342-1343 (1990).
[6] ‘Au-induced reconstructions of the Si(111) surface’, T. Hasegawa, K.
Takata, S. Hosaka and S. Hosoki, J. Vac. Sci. Technol. A8, 241-244 (1990).
1989年
[5] ‘Tunneling acoustic microscope’, K. Takata, J. Yugami, T. Hasegawa, S. Hosaka, S. Hosoki and T. Komoda, Jpn. J. Appl. Phys. 28, L2279-L2280 (1989).
[4] ‘Tunneling acoustic microscope’, K. Takata, T. Hasegawa, S. Hosaka,
S. Hosoki and T. Komoda, Appl. Phys. Lett. 55, 1718-1720 (1989).
1988年
[3] ‘Epitaxy of Au and Ag on cleaved (10,0) surface of MoS2’, N. Ikarashi, K. Kobayashi, T. Hasegawa and K. Yagi, Jpn. J. Appl. Phys. 27, L750-L752 (1988).
[2] ‘Profile and plan-view imaging of reconstructed surface structures
of gold’, N. Ikarashi, K. Kobayashi, H. Koike, T. Hasegawa and K. Yagi,
Ultramicroscopy 26, 195-203 (1988).
1986年
[1] ‘Atomic Resolution TEM Images of the Au(001) Reconstructed Surface’,
T. Hasegawa, K. Kobayashi, N. Ikarashi, K. Takayanagi and K. Yagi, Jpn.
J. Appl. Phys. 25, L366-L368 (1986).